<u>Sec. 14.5</u>: The Chain Rule (Calc. III version)

What We Will Go Over In Section 14.5

- 1. The Chain Rule (Calc. III version)
- 2. Implicit Differentiation

Calc 1 Version...

<u>Recall</u>: The Chain Rule is the rule you use to find the derivative of a composition of functions

<u>Ex</u>: Find...

$$\frac{d}{dx}\sin x \qquad \qquad \frac{d}{dx}\sin(e^x) \qquad \qquad \frac{d}{dx}\sin(u)$$

If you call the "stuff" u, then the Calc. I chain rule can be written as:

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$
 or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

y (or f)

x

Calc 3 Version...

- There are many "stuffs"
- Think of *f* as a function of many variables (not independent) and that each of these variables are functions of other variables

Calc 3 Version...

- There are many "stuffs"
- Think of *f* as a function of many variables (not independent) and that each of these variables are functions of other variables

So if f (or z) is a function of x and y, and each of x and y are functions of r, s and t, then...

Tree

Chain Rule

<u>Ex 1</u>: **Example 1**

If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find dz/dt when t = 0.

<u>Ex 2</u>: **Example 3**

If $z = e^x \sin y$, where $x = st^2$ and $y = s^2 t$, find $\partial z / \partial s$ and $\partial z / \partial t$.

<u>Ex 3</u>: **Example 4**

Write out the Chain Rule for the case where w = f(x, y, z, t) and

x = x (u, v), y = y (u, v), z = z (u, v), and t = t (u, v).

<u>Ex 4</u>: **Example 5**

If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\partial u/\partial s$ when r = 2, s = 1, t = 0.

<u>Ex 5</u>: **Example 7**

If z = f(x, y) has continuous second-order partial derivatives and $x = r^2 + s^2$ and y = 2rs, find (a) $\partial z/\partial r$ and (b) $\partial^2 z/\partial r^2$.

Implicit Differentiation (Calc. I situation)

If F(x, y) = k defines y implicitly as a function of x, then

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Find *y*' if $x^3 + y^3 = 6xy$.

Implicit Differentiation (Calc. III situation)

If F(x, y, z) = k defines z implicitly as a function of x and y, then

7
$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.